Вход для сотрудников

Федеральное государственное бюджетное научное учреждение
«ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР ПИЩЕВЫХ СИСТЕМ
ИМ. В.М.ГОРБАТОВА»
Российской Академии Наук

УДК 537.531:595.7
Табл. 4. Библ. 56.

DOI: 10.21323/2071-2499-2022-6-54-57

Влияние электромагнитного излучения на развитие и метаморфоз личинок Чёрной львинки (Hermetia illucens)

Зеров А.В., канд. хим. наук, Мечтаева Е.В., Лоскутов С.И., канд. с.-х. наук, Рябухин Д.С., канд. хим. наук
Всероссийский научно-исследовательский институт пищевых добавок – филиал ФНЦ пищевых систем им. В.М. Горбатова
Ключевые слова: Чёрная львинка, Hermetia illucens, электромагнитное излучение, электромагнитное поле, утилизация отходов,
Реферат:
Разработка методов применения насекомых как альтернативного источника питательных веществ, а также для утилизации некондиционных продуктов, является важной задачей пищевой промышленности. Для эффективного производства и применения насекомых необходимо учитывать влияние различных внешних факторов. В данной работе было изучено влияние электромагнитного излучения на рост личинок Чёрной львинки, а также возможность их последующего развития до стадии взрослой особи. Исследована зависимость средней массы, смертности и конверсии во взрослую особь личинок Чёрной львинки от времени облучения (непрерывное облучение или ежедневное на протяжении 60 минут). Было найдено, что электромагнитное поле (10 µT, 3000 В/м) не оказывает существенного влияния на развитие личинок Чёрной львинки. Однако непрерывное облучение взрослых личинок, вероятно, ускоряет их метаморфоз.


The influence of electromagnetic radiation on the growth and metamorphosis of the black soldier fly (Hermetia illucens) larvae

Zerov A.V., Mechtaeva E.V., Loskutov S.I., Ryabukhin D.S.
All-Russian Research Institute for Food Additives – branch of Gorbatov Research Center for Food Systems
Key words: black soldier fly, Hermetia illucens, electromagnetic radiation, electromagnetic field, waste recycling.
Summary:
The development of methods for the use of insects as an alternative source of nutrients, as well as for the disposal of substandard products, is an important task for the food industry. For the effective production and use of insects, it is necessary to take into account the influence of various external factors. In this work, we studied the effect of electromagnetic radiation on the growth of black soldier fly larvae, as well as the possibility of their subsequent transformation to the imago stage. The dependence of the average weight, mortality and conversion into imago of black soldier fly larvae on the time of exposure (continuous exposure or daily 60-minute exposure) was studied. It was found that the electromagnetic field (10 µT, 3000 V/m) does not significantly affect the growth of black soldier fly larvae. However, continuous irradiation of larvae probably hastens their metamorphosis.


СПИСОК ЛИТЕРАТУРЫ / REFERENCES:

1. Vandeweyer, D. Biological contaminants in insects as food and feed / D. Vandeweyer, J. De Smet, N. Van Loovere, L. Van Campenhout // Journal of Insects as Food and Feed. – 2021. – V. 7 (5). – P. 807–822. DOI: 10.3920/JIFF2020.0060.

2. Elorduy, R.B.J. The importance of edible insects in the nutrition and economy of people of the rural areas of Mexico / R.B.J. Elorduy // Ecology of Food and Nutrition. – 1997. – V. 36 (5). – P. 347–366. DOI: 10.1080/03670244.1997.9991524.

3. XiaoMin, C. Review of the nutritive value of edible insects / C. XiaoMin, F. Ying, Z. Hong, C. ZhiYong // Asia-Pacific resources and their potential for development, Chiang Mai, Thailand, 2008. – P. 85–92.

4. Электронный ресурс. – Режим доступа [https://prezero.us/]. Дата обращения: 13.05.2022.

Electronic resource. – Access mode [https://prezero.us/]. Date of access: 13.05.2022.

5. Электронный ресурс. – Режим доступа [https://www.enviroflight.net]. Дата обращения: 13.05.2022.

Electronic resource. – Access mode [https://www.enviroflight.net]. Date of access: 13.05.2022.

6. Электронный ресурс. – Режим доступа [https://www.fao.org/fao-who-codexalimentarius/en]. Дата обращения: 13.05.2022.

Electronic resource. – Access mode [https://www.fao.org/fao-who-codexalimentarius/en]. Date of access: 13.05.2022.

7. Favre, D. Mobile phone-induced honeybee worker piping / D. Favre // Apidologie. – 2011. – V. 42. – P. 270–279. DOI: 10.1007/s13592–011–0016-x.

8. Harst, W. Can electromagnetic exposure cause a change in behaviour? Studying possible non-thermal influences on honeybees – an approach within the framework of educational informatics / W. Harst, J. Kuhn, H. Stever // Acta Syst IIAS Int J. – 2006. – V. (1). – P. 1–6.

9. Lázaro, A. Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators / A. Lázaro, A. Chroni, T. Tscheulin, J. Devalez, C. Matsoukas, T. Petanidou // Journal of Insect Conservation. – 2016. – V. 20. – P. 315–324. DOI: 10.1007/s10841–016–9868–8.

10. Pereira, M.C. Can altered magnetic field affect the foraging behaviour of ants? / M.C. Pereira, I.D.C. Guimarães, D. Acosta-Avalos, W.F. Antonialli Junior // PLoS One. – 2019. – V. 14 (11). – e0225507. DOI: 10.1371/journal.pone.0225507.

11. Balmori, A. Electromagnetic radiation as an emerging driver factor for the decline of insects / A. Balmori // Science of the Total Environment. – 2021. – V. 767. – Р. 144913. DOI: 10.1016/j.scitotenv.2020.144913.

12. Cammaerts, M.-C. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation / M.-C. Cammaerts, Z. Rachidi, F. Bellens, P. De Doncker // Electromagnetic biology and medicine. – 2013. – V. 32. – P. 315–332. DOI: 10.3109/15368378.2012.712877.

13. Vargová, B. Ticks and radio-frequency signals: behavioural response of ticks (Dermacentor reticulatus) in a 900 MHz electromagnetic field / B. Vargová, J. Kurimský, R. Cimbala, M. Kosterec, I. Majláth, N. Pipová, P. Tryjanowski, Ł. Jankowiak, V. Majláthová // Systematic and Applied Acarology. – 2017. – V. 22. – P. 683–693. DOI: 10.11158/saa.22.5.7.

14. Shepherd, S. Extremely low frequency electromagnetic fields impair the cognitive and motor abilities of honey bees / S. Shepherd, M.A.P. Lima, E.E. Oliveira, S.M. Sharkh, C.W. Jackson, P.L. Newland // Sci Rep. – 2018. – V. 8 (1). P. 1–9. DOI: 10.1038/s41598–018–26185-y.

15. Lupi, D. Effects of pesticides and electromagnetic fields on honeybees: a field study using biomarkers / D. Lupi, P. Tremolada, M. Colombo, R. Giacchini, R. Benocci, P. Parenti, M. Parolini, G. Zambon, M. Vighi // International Journal of Environmental Research. – 2020. – V. 14. – P. 107–122. DOI: 10.1007/s41742–019–00242–4.

16. Erdoğan, Y. Effect of Electromagnetic Field (EMF) and Electric Field (EF) on Some Behavior of Honeybees (Apis mellifera L.) / Y. Erdoğan, M.M. Cengiz // bioRxiv, 2019. DOI: 10.1101/608182.

17. Kirschvink, J.L. Magnetite-based magnetoreception / J.L. Kirschvink, M.M. Walker, C. Diebel // Curr Opin Neurobiol. – 2001. – V. 11. – P. 462–467. DOI: 10.1016/S0959–4388(00)00235-X.

18. Wajnberg, E. Magnetoreception in eusocial insects: an update / E. Wajnberg, D. Acosta-Avalos, O.C. Alves, J.F. de Oliviera, R.B. Srygley, D.M. Esquivel // J R Soc Interface. – 2010. – V. 7. – P. 207–225. DOI: 10.1098/rsif.2009.0526.focus.

19. Válková, T. How do honeybees use their magnetic compas? Can they see the North? / T. Válková, M. Vácha // Bull Entomol Res. – 2012. – V. 102. – P. 461–467. DOI: 10.1017/S0007485311000824.

20. Balmori, A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation / A. Balmori // Sci. Total Environ. – 2015. – V. 518–519. – P. 58–60. DOI: 10.1016/j.scitotenv.2015.02.077.

21. Vácha, M. Radio-frequency magnetic fields disrupt magnetoreception in American cockroach / M. Vácha, T. Půžová, M. Kvíćalová // J. Exp Biol. – 2009. – V. 212. – P. 3473–3477. DOI: 10.1242/jeb.028670.

22. Cammaerts, M.-C. Ants can be used as bioindicators to reveal biological effects of electromagnetic waves from some wireless apparatus / M.-C. Cammaerts, O. Johansson // Electromagn Biol Med. – 2014. – V. 33. – P. 282–288. DOI: 10.3109/15368378.2013.817336.

23. Cammaerts, M.-C. Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti / M.-C. Cammaerts, G.A.E. Vandenbosch, V. Volski // J. Insect Behav. – 2014. – V. 27. – P. 514–526. DOI: 10.1007/s10905–014–9446–4.

24. Cammaerts, M.-C. GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues / M.-C. Cammaerts, P. De Doncker, X. Patris, F. Bellens, Z. Rachidi, D. Cammaerts // Electromagn Biol Med. – 2012. – V. 31. – P. 151–165. DOI: 10.3109/15368378.2011.624661.

25. Lopatina, N.G. Effect of non-ionizing electromagnetic radiation on behavior of the honeybee, Apis mellifera L. (Hymenoptera, Apidae) / N.G. Lopatina, T.G. Zachepilo, N.G. Kamyshev, N.A. Dyuzhikova, I.N. Serov // Entomological Review. – 2019. – V. 99. – P. 24–29. DOI: 10.1134/S0013873819010032.

26. Atli, E. The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster / E. Atli, H. Ünlü // Int J. Radiat Biol. – 2006. – V. 82. – P. 435–441. DOI: 10.1080/09553000600798849.

27. Maharjan, R. Effects of radiofrequency on the development and performance of Callosobruchus chinensis (Coleoptera: Chrysomelidae: Bruchinae) on three different leguminous seeds / R. Maharjan, H. Yi, J. Ahn, G.H. Roh, C. Park, Y. Yoon, S. Bae // Appl Entomol Zool. – 2019. – V. 54 (3). – P. 255–266. DOI: 10.1007/s13355–019–00621–5.

28. Maharjan, R. Oviposition preference and development of Maruca vitrata (Fabricius) (Lepidoptera: Crambidae) on different radiofrequency fields / R. Maharjan, S. Bae, G.H. Kim, Y. Yoon, Y. Jang, Y. Kim, H. Yi // Entomological Research. – 2019. – V. 49 (5). – P. 214–222. DOI: 10.1111/1748–5967.12349.

29. Maharjan, R. Artificial radiofrequency driven life-table parameters of perilla seed bugs (Nysius sp.) (Heteroptera: Lygaeidae) / R. Maharjan, Y. Yoon, Y. Jang, M. Jeong, T.W. Jung, H.S. Cho, H. Yi // J. Asia Pac Entomol. – 2020. – V. 23 (4). – P. 1264–1271. DOI: 10.1016/j.aspen.2020.10.011.

30. Stanojević, V. Effects of extremely low frequency (50 Hz) magnetic field on development dynamics of the housefly (Musca domestica L.) / V. Stanojević, Z. Prolić, T. Savić, D. Todorović, B. Janać // Electromagnetic Biology and Medicine. – 2005. – V. 24 (2). – P. 99–107. DOI: 10.1080/15368370500205464.

31. Odemer, R. Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success / R. Odemer, F. Odemer // Sci Total Environ. – 2019. – V. 661. – P. 553–562. DOI: 10.1016/j.scitotenv.2019.01.154.

32. Yoshii, T. Cryptochrome mediates light-dependent magnetosensitivity of drosophila’s circadian clock / T. Yoshii, M. Ahmad, C. Helfrich-Foerster // PLoS Biol. – 2009. – V. 7. – P. 0813–0819. DOI: 10.1371/journal.pbio.1000086.

33. Fedele, G. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster / G. Fedele, M.D. Edwards, S. Bhutani, J.M. Hares, M. Murbach, E.W. Green, S. Dissel, H.M. Hastings, E. Rosato, C.P. Kyriacou // PLoS Genet. – 2014. – V. 10. – e1004804. DOI: 10.1371/journal.pgen.1004804.

34. Bartos, P. Weak radiofrequency fields affect the insect circadian clock / P. Bartos, R. Netusil, P. Slaby, D. Dolezel, T. Ritz, M. Vacha // J. R. Soc Interface. – 2019. – V. 16 (158). – Р. 20190285. DOI: 10.1098/rsif.2019.0285.

35. Panagopoulos, D.J. The effect of exposure duration on the biological activity of mobile telephony radiation / D.J. Panagopoulos, L.H. Margaritis // Mutat Res. – 2010. – V. 699. – P. 17–22. DOI: 10.1016/j.mrgentox.2010.04.010.

36. Panagopoulos, D.J. Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster / D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis // Electromagn Biol Med. – 2004. – V. 23. – P. 29–43. DOI: 10.1081/JBC-120039350.

37. Panagopoulos, D.J. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation / D.J. Panagopoulos, E.D. Chavdoula, I.P. Nezis, L.H. Margaritis // Mutat Res. – 2007. – V. 626. – P. 69–78. DOI: 10.1016/j.mrgentox.2006.08.008.

38. Panagopoulos, D.J. Bioeffects of mobile telephony radiation in relation to its intensity or distance from the antenna / D.J. Panagopoulos, E.D. Chavdoula, L.H. Margaritis // Int. J. Radiat Biol. – 2010. – V. 86. – P. 345–357. DOI: 10.3109/09553000903567961.

39. Chavdoula, E.D. Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: detection of apoptotic cell-death features / E.D. Chavdoula, D.J. Panagopoulus, L.H. Margaritis // Mutat Res. – 2010. – V. 700. – P. 51–61. DOI: 10.1016/j.mrgentox.2010.05.008.

40. Atli, E. The effects of microwave frequency electromagnetic fields on the fecundity of Drosophila melanogaster / E. Atli, H. Ünlü // Turkish J Biol. – 2007. – V. 31. – P. 1–5. DOI: 10.1080/09553000600798849.

41. Weisbrot, D. Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster / D. Weisbrot, H. Lin, L. Ye, M. Blank, R. Goodman // J. Cell Biochem. – 2003. – V. 89. – P. 48–55. DOI: 10.1002/jcb.10480.

42. Vijver, M.G. Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation / M.G. Vijver, J.F.B. Bolte, T.R. Evans, W.L.M. Tamis, W.J.G.M. Peijnenburg, C.J.M. Musters, G.R. de Snoo // Electromagn Biol Med. – 2013. – V. 33 (1). – P. 21–28. DOI: 10.3109/15368378.2013.783846.

43. Kumar, N.R. Biochemical changes in haemolymph of Apis mellifera L. drone under the influence of cell phone radiations / N.R. Kumar, N. Rana, P. Kalia // Journal of Applied and Natural Science. – 2013. – V. 5. – P. 139–141. DOI: 10.31018/jans.v5i1.296.

44. Lima, F. Effects of radiation technologies on food nutritional quality / F. Lima, K. Vieira, M. Santos, P.M. de Souza // Descriptive food science. – 2018. – P. 1–17. DOI: 10.5772/intechopen.80437.

45. Munir, M.T. Control of foodborne biological hazards by ionizing radiations / M.T. Munir, M.M. Federighi // Foods. – 2020. – V. 9 (7). – P. 878–901. DOI: 10.3390/foods9070878

46. Sarcan, E.T. Ionizing radiation and its effects on pharmaceuticals / E.T. Sarcan, A.Y. Ozer // Journal of Radioanalytical and Nuclear Chemistry. – 2020. – V. 323. – P. 1–11. DOI: 10.1007/s10967–019–06954–3.

47. Adebo, O.A. A review on novel non-thermal food processing techniques for mycotoxin reduction / O.A. Adebo, A.B. Oyedeji, S. Gbashi, M.A. Adefisoye, O.M. Ogundele // International Journal of Food Science and Technology. – 2021. – V. 56 (1). – P. 13–27. DOI: 10.1111/ijfs.14734.

48. Akhila, P.P. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review / P.P. Akhila, K.V. Sunooj, B. Aaliya, M. Navaf, C. Sudheesh, S. Sabu, A. Sasidharan, S.A. Mir, J. George, A.M. Khaneghah // Trends in Food Science and Technology. – 2021. – V. 114. – P. 399–409. DOI: 10.1016/j.tifs.2021.06.013.

49. Chen, Y. Evaluation of the extremely-low-frequency electromagnetic field (ELF-EMF) on growth of bacteria Escherichia coli / Y. Chen, Z.Z. Cai, Q. Feng, P. Gao, Y. Yang, X. Bai, B.Q. Tang // Biol Eng Med. – 2019. – V. 4. – P. 1–6. DOI: 10.15761/BEM.1000169.

50. Del Re, B. Extremely low frequency magnetic fields affect transposition activity in Escherichia coli / B. Del Re, F. Garoia, P. Mesirca, C. Agostini, F. Bersani, G. Giorgi // Radiat Environ Biophys. – 2003. – V. 42 (2). – P. 113–118. DOI: 10.1007/s00411–003–0192–9.

51. Ahmed, I. Evaluation of the effects of Extremely Low Frequency (ELF) Pulsed Electromagnetic Fields (PEMF) on survival of the bacterium Staphylococcus aureus / I. Ahmed, T. Istivan, I. Cosic, E. Pirogova // EPJ Nonlinear Biomed Phys. – 2013. – V. 1. – P. 1–17. DOI: 10.1140/epjnbp12.

52. Garuba, E.O. Evaluation of the effects of sound exposure and low field electromagnetism on growth and antibiotics susceptibility of some microorganisms / E.O. Garuba, O.M. Ajunwa, A.N. Ibrahim King // Bulletin of the National Research Centre. – 2021. – V. 45. – Article number: 216. DOI: 10.1186/s42269–021–00674-z.

53. Tessaro, L.W.E. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields / L.W.E. Tessaro, N.J. Murugan, M.A. Persinger // Microbiological Research. – 2015. – V. 172. – P. 26–33. DOI: 10.1016/j.micres.2014.12.008.

54. Salmen, S.H. Evaluation of Effect of High Frequency Electromagnetic Field on Growth and Antibiotic Sensitivity of Bacteria / S.H. Salmen, S.A. Alharbi, A.A. Faden, M. Wainwright // Saudi J. Biol Sci. – 2018. – V. 25 (1). – P. 105–110. DOI: 10.1016/j.sjbs.2017.07.006.

55. Beretta, G. The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation / G. Beretta, A.F. Mastorgio, L. Pedrali, S. Saponaro, E. Sezenna // Rev Environ Sci Biotechnol. – 2019. – V. 18. – P. 29–75. DOI: 10.1007/s11157–018–09491–9.

56. Liu, X. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly / X. Liu, X. Chen, H. Wang, Q. Yang, K. ur Rehman, W. Li, M. Cai, Q. Li, L. Mazza, J. Zhang, Z. Yu, L. Zheng // PLoS ONE. – 2017. – V. 12 (8). – e0182601. DOI: 10.1371/journal.pone.0182601.


Контакты:

Зеров Алексей Владимирович
Телефон: +7 (812) 273-25-41
zerovaleksei1995@gmail.com
Мечтаева Елизавета Владимировна
mechtaeva.lisa@gmail.com
Лоскутов Святослав Игоревич
lislosk@mail.ru
Рябухин Дмитрий Сергеевич
rdms@bk.ru

Для цитирования:

Зеров, А.В. Влияние электромагнитного излучения на развитие и метаморфоз личинок Чёрной львинки (Hermetia illucens) / А.В. Зеров, Е.В. Мечтаева, С.И. Лоскутов, Д.С. Рябухин // Все о мясе. – 2022. – № 6. – С. 54-57. DOI: 10.21323/2071-2499-2022-6-54-57.

For citation:

Zerov, A.V. The influence of electromagnetic radiation on the growth and metamorphosis of the black soldier fly (Hermetia illucens) larvae / A.V. Zerov, E.V. Mechtaeva, S.I. Loskutov, D.S. Ryabukhin // Vsyo o myase. – 2022. – № 6. – Р. 54-57. DOI: 10.2132





Политика конфиденциальности

Противодействие коррупции

Карта сайта

Яндекс цитирования Яндекс.Метрика