Вход для сотрудников

Федеральное государственное бюджетное научное учреждение
«ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР ПИЩЕВЫХ СИСТЕМ
ИМ. В.М.ГОРБАТОВА»
Российской Академии Наук

УДК 577.151.45:57.037
Ил. 10. Библ. 56.

DOI: 10.21323/2071-2499-2022-6-12-19

Основные представления о кинетике ферментативных процессов и подходах к её определению

Кондратенко В.В., канд. техн. наук, Петров А.Н., академик РАН, Кондратенко Т.Ю.
ВНИИ технологии консервирования – филиал ФНЦ пищевых систем им. В.М. Горбатова
Ключевые слова: ферментативные процессы, кинетика, кинетическое уравнение, кинетические показатели,
Реферат:
Показана перспективность применения гомоферментных препаратов для получения ингредиентов пищевых систем животного и растительного происхождения. Систематизированы и аргументированы существующие на настоящий момент основные представления о кинетике ферментативных процессов. Представлены основные виды кинетических уравнений, отражающих зависимость темпа ферментативного процесса от концентрации субстрата. Показано влияние на формирование вида кинетического уравнения различных вариантов ингибирования (конкурентного, неконкурентного и бесконкурентного) и эффектов кооперации (в случае аллостерического ферментирования). Дан системный анализ существующих формальных подходов к численному определению кинетических показателей ферментативных процессов (максимального темпа ферментативного процесса и константа Михаэлиса) от преобразования по Лайнуиверу-Берку до представления о том, что реальное проявление ферментативной кинетики с течением времени может меняться, представляя собой «срез» процесса в каждый дискретный момент времени.


Basic notions for kinetics of enzymatic processes and approaches to its determination

Kondratenko V.V., Petrov A.N., Kondratenko T.Yu.
Russian Research Institute of Canning Technology – branch of Gorbatov Research Center for Food Systems
Key words: enzymatic processes, kinetics, kinetic equation, kinetic indicators
Summary:
The prospects of using homoenzyme preparations to produce ingredients of food systems of animal and plant origin are shown. The basic current notions of kinetics of enzymatic processes are systematized and reasoned. The main types of kinetic equations reflecting dependence of the enzymatic process rate on the substrate concentration are presented. The influence of various inhibition types, such as competitive, uncompetitive and non-competitive ones, and cooperation effects (in the case of allosteric fermentation) on the formation of the kinetic equation type is shown. A systematic analysis was given for existing formal approaches to the numerical determination of kinetic parameters of enzymatic processes (the maximum rate of the enzymatic process and the Michaelis constant) from the Lineweaver-Burk transformation to the idea that the real appearance of enzymatic kinetics may be changed over time, representing a "slice" of the process at each discrete moment in time.


СПИСОК ЛИТЕРАТУРЫ / REFERENCES:

  1. Tzia, C. Handbook of food processing: food safety, quality, and manufacturing processes / C. Tzia, Th. Varzakas. – CRC Press: Boca Raton, FL, 2016. – 659 p.

  1. Anal, A. Food processing by-products and their utilization / A. Anal, Ed. – John Wiley & Sons. Hoboken, NJ, 2017. – 570 p.

  1. Galanakis, Ch.M. (ed.). Sustainable Food Systems from Agriculture to Industry: Improving Production and Processing; Galanakis, Ch.M., Ed. – Academic Press: Kidlington, United Kingdom, 2018. – 426 p.

  1. Barba, F.J. Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds / F.J. Barba, J.M.A. Saraiva, G. Cravotto, J.M. Lorenzo, Ed. – Woodhead Publishing: Kidlington, United Kingdom, 2019. – 357 p.

  1. Fellows, P.J. Food Processing Technology: Principles and practice. Fourth Edition / P.J. Fellows. – Woodhead Publishing: Kidlington, United Kingdom, 2017. – 1200 p.

  1. Kondratenko, V.V. Assessing protopectin transformation potential of plant tissue using a zoned criterion space / V.V. Kondratenko, T.Y. Kondratenko, A.N. Petrov, G.A. Belozerov // Foods and Raw Materials. – 2020. – T. 8. – № 2. – P. 348-361. DOI: 10.21603/2308-4057-2020-2-348-361.

  1. Kondratenko, V.V. Directed homoenzymatic fragmentation of the plant protopectin complex: Assessment criteria / V.V. Kondratenko, T.Y. Kondratenko, A.N. Petrov // Foods and Raw Materials. – 2021. – T. 9. – № 2. – P. 254-261. DOI: 10.21603/2308-4057-2021-2-254-261.

  1. Caffall, K.H. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides / K.H. Caffall, D. Mohnen // Carbohydrate Research. – 2009. – T. 344. – № 14. – P. 1879-1900. DOI: 10.1016/j.carres.2009.05.021.

  1. Benz, J.Ph. A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations / J.Ph. Benz, B.H. Chau, D. Zheng, S. Bauer, N.L. Glass, Ch.R. Somerville // Molecular Microbiology. – 2014. – T. 91. – № 2. – P. 275-299. DOI: 10.1111/mmi.12459.

  1. Vitol, I.S. Bioconversion of secondary products of processing of grain cereals crops / I.S. Vitol, N.A. Igoryanova, E.P. Meleshkina // Food systems. – 2019. – T. 2. – № 4. – P. 18-24. DOI: 10.21323/2618-9771-2019-2-4-18-24.

  1. Marangoni, A.G. Enzyme Kinetics: A Modern Approach / A.G. Marangoni. – John Wiley & Sons: Hoboken, New Jersey, 2003. – 229 p.

  1. Fromm, H.J. Essentials of Biochemistry / H.J. Fromm, M.S. – Hargrove; Springer-Verlag: Berlin, Heidelberg, 2012. – 364 p. DOI: 10.1007/978-3-642-19624-9.

  1. Северин, Е.С. Биологическая химия / Е.С. Северин, Т.Л. Алейникова, Е.В. Осипов, С.А. Силаева. – М.: ООО Медицинское информационное агентство, 2008. – 346 с.

Severin, E.S. Biologicheskaya ximiya [Biological chemistry] / E.S. Severin, T.L. Alejnikova, E.V. Osipov, S.A. Silaeva. – M.: Medicinskoe informacionnoe agentstvo LLC, 2008. – 346 p.

  1. Michaelis, L. Die Kinetik der Invertinwirkung / L. Michaelis, M.L. Menten // Biochemische Zeitschrift. – 1913. – № 49. – P. 333-369.

  1. Briggs, G.E. A note on the kinetics of enzyme action / G.E. Briggs, J.B. Haldane // J. Biochem. – 1925. – № 19. – P. 338-339. DOI: 10.1042/bj0190338.

  1. Johnson, K.A. The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper / K.A. Johnson, R.S. Goody // Biochemistry. – 2011. – T. 50. – № 39. – P. 8264-8269. DOI: 10.1021/bi201284.

  1. Walsh, R. Alternative Perspectives of Enzyme Kinetic Modeling / R. Walsh. – Medicinal Chemistry and Drug Design; Ekinci D., Ed. – IntechOpen, 2012. – P. 357-372. DOI: 10.5772/36973.

  1. Cornish-Bowden, A. One hundred years of Michaelis-Menten kinetics. Review / A. Cornish-Bowden // Perspectives in Science. – 2015. – № 4. – P. 3-9. DOI: 10.1016/j.pisc.2014.12.002.

  1. Marasović, M. Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation / M. Marasović, T. Marasović, M. Miloš // Journal of Chemistry. – 2017. – Р. 6560983. DOI: 10.1155/2017/6560983.

  1. Srinivasan, B. A guide to the Michaelis-Menten equation: steady state and beyond / B. Srinivasan // FEBS J. – № 202. – febs.16124. DOI: 10.1111/febs.16124.

  1. Баранова, В.Н. Влияние внешних факторов на ферментативные реакции / В.Н. Баранова, Е.И. Селиванец, Л.В. Боровская // The Scientific Heritage. – 2021. – № 79-2. – P. 37-40. DOI: 10.24412/9215-0365-2021-79-2-37-40.

Baranova, V.N. Vliyanie vneshnix faktorov na fermentativny`e reakcii [Influence of external factors on enzymatic reactions] / V.N. Baranova, E.I. Selivanecz, L.V. Borovskaya // The Scientific Heritage. – 2021. – № 79-2. – P. 37-40. DOI: 10.24412/9215-0365-2021-79-2-37-40.

  1. Leyla Acan, N. Some comments on enzyme kinetics studies / N. Leyla Acan // Turkish Journal of Biochemistry. – 2020. – T. 45. – № 6. – P. 677-679. DOI: 10.1515/tjb-2020-0275.

  1. Cornish-Bowden, A. Fundamentals of Enzyme Kinetics. 4th Edition / A. Cornish-Bowden. – Wiley Blackwel: Weinheim, Germany, 2012. – 507 p.

  1. Bisswanger, H. Enzyme Kinetics: Principles and Methods. Third, enlarged and improved Edition; Bisswanger, H., Ed. – Wiley-VCH: Weinheim, Germany, 2017. – 316 p.

  1. Lineweaver, H. The Determination of Enzyme Dissociation Constants / H. Lineweaver, D. Burk // Journal of the American Chemical Society. – 1934. – T. 56. – № 3. – P. 658-666. DOI: 10.1021/ja01318a036.

  1. Hofstee, B.H.J. On the Evaluation of the Constants Vm and KM in Enzyme Reactions / B.H.J. Hofstee // Science. – 1952. – T. 116. – № 3013. – P. 329-331. DOI: 10.1126/science.116.3013.32.

  1. Hofstee, B.H.J. Graphical analysis of single enzyme systems / B.H.J. Hofstee // Enzymologia. – 1956. – T. 17. – № 5-6. – P. 273-8. PMID: 13397508.

  1. Hofstee, B.H.J. Non-Inverted Versus Inverted Plots in Enzyme Kinetics / B.H.J. Hofstee // Nature. – 1959. – T. 184. – № 4695. – P. 1296-1298. DOI: 10.1038/1841296b0.

  1. Hanes, C.S. Studies on plant amylases: The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley / C.S. Hanes // J. Biochem. – 1932. – T. 26. – № 5. – P. 1406-1421. DOI: 10.1042/bj0261406.

  1. Haldane, J.B.S. Graphical Methods in Enzyme Chemistry / J.B.S. Haldane // Nature. – 1957. – T. 179. – № 832. – P. 832. DOI: 10.1038/179832b0.S2CID4162570.

  1. Pant, M. Nonlinear Optimization of Enzyme Kinetic Parameters / M. Pant, P. Sharma, T. Radha, R.S. Sangwan, U. Roy // Journal of Biological Sciences. – 2008. – № 8. – P. 1322-1327. DOI: 10.3923/jbs.2008.1322.1327.

  1. Seibert, E. Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis–Type (Atypical) Enzyme Kinetics / E. Seibert, T.S. Tracy // In: Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology. V.2342; Nagar S., Argikar U.A., Tweedie D., Eds. – Humana: New York, NY, 2021. – P. 3-27. DOI: 10.1007/978-1-0716-1554-6_1.

  1. Hanes-Woolf plot; Wikipedia. The Free Encyclopedia; July 16, 2022. Electronic resource. – Access mode: [https://en.wikipedia.org/w/index.php?title=Hanes%E2%80%93Woolf_plot&oldid=1038398512].

  1. Rodriguez, J.-M.G. Michaelis-Menten Graphs, Lineweaver-Burk Plots, and Reaction Schemes: Investigating Introductory Biochemistry Students’ Conceptions of Representations in Enzyme Kinetics / J.-M.G. Rodriguez, N.P. Hux, S.J. Philips, M.H. Towns // J. Chem. Educ. – 2019. – T. – 96. – № 9. – P. 1833-1845. DOI: 10.1021/acs.jchemed.9b00396.

  1. Choi, B. Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters / B. Choi, G.A. Rempala, J.K. Kim // Sci Rep. – 2017. – № 7. – Р. 17018. DOI: 10.1038/s41598-017-17072-z.

  1. Olp, M.D. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces / M.D. Olp, K.S. Kalous, B.C. Smith // BMC Bioinformatics. – 2020. – № 21. – Р. 186. DOI: 10.1186/s12859-020-3513-y.

  1. Wu, J. Real-Time Analysis of Enzyme Kinetics via Micro Parallel Liquid Chromatography / J. Wu, R. Barbero, S. Vajjhala, S.D. O’Connor // ASSAY and Drug Development Technologies. – 2006. – T. 4. – № 6. – P. 653-660. DOI: 10.1089/adt.2006.4.653.

  1. Lyangusov, A.Yu. A new approach to computation of parameters in enzymatic kinetics / A.Yu. Lyangusov, T.A. Petrova, V.E. Stefanov // Doklady Biochemistry and Biophysics. – 2009. – Т. 424. – № 1. – P. 49-52.

  1. Кулиш, Е.И. Изучение процесса ферментативного расщепления хитозана в растворе уксусной кислоты / Е.И. Кулиш, И.Ф. Туктарова, В.В. Чернова, С.В. Колесов // Вестник Башкирского университета. – 2013. – T. 18. – № 3. – С. 688-690.

Kulish, E.I. Izuchenie processa fermentativnogo rasshhepleniya xitozana v rastvore uksusnoj kisloty [Study of chitosan enzymatic cleavage process in acetic acid solution] / E.I. Kulish, I.F. Tuktarova, V.V. Chernova, S.V. Kolesov // Vestnik Bashkirskogo universiteta. – 2013. – T. 18. – № 3. – P. 688-690.

  1. Туктарова, И.Ф. Кинетические закономерности ферментативного гидролиза хитозана под действием гиалуронидазы в присутствии некоторых антибиотиков – низкомолекулярных электролитов / И.Ф. Туктарова // Дисс. на соиск. учен. степ. канд. хим. наук со спец. 02.00.04 Физическая химия. – Уфа, 2015. – 148 с.

Tuktarova, I.F. Kineticheskie zakonomernosti fermentativnogo gidroliza xitozana pod dejstviem gialuronidazy` v prisutstvii nekotory`x antibiotikov – nizkomolekulyarny`x e`lektrolitov [Kinetic regularities for enzymatic hydrolysis of chitosan under the action of hyaluronidase in the presence of some antibiotics – low molecular weight electrolytes] / I.F. Tuktarova // Thesis for Ph.D. in physical chemistry. – Ufa, 2015. – 148 p.

  1. Her, C. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function / C. Her, A.P. Alonzo, J.Y. Vang, E. Torres, V.V. Krishnan // Journal of Chemical Education. – 2015. – T. 92. – № 11. – P. 1943-1948. DOI: 10.1021/acs.jchemed.5b00136.

  1. Hewitt, S.H. A simple, robust, universal assay for real-time enzyme monitoring by signaling changes in nucleoside phosphate anion concentration using a europium(III)-based anion receptor / S.H. Hewitt, R. Ali, R. Mailhot, C.R. Antonen, C.A. Dodson, S.J. Butler // Chemical Science. – 2019. – T. 10. – № 20. – P. 5373-5381. DOI: 10.1039/c9sc01552c.

  1. Wang, Y. Enzyme Kinetics by Isothermal Titration Calorimetry: Allostery, Inhibition, and Dynamics / Y. Wang, G. Wang, N. Moitessier, A.K. Mittermaier // Front. Mol. Biosci. – 2020. – № 7. – Р. 583826. DOI: 10.3389/fmolb.2020.583826.

  1. Jepsen, S.T. Real-Time Interferometric Refractive Index Change Measurement for the Direct Detection of Enzymatic Reactions and the Determination of Enzyme Kinetics / S.T. Jepsen, T.M. Jørgensen, H.S. Sørensen, S.R. Kristensen // Sensors. – 2019. – T. 19. – № 3. – Р. 539. DOI: 10.3390/s19030539.

  1. Bäuerle, F. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool / F. Bäuerle, A. Zotter, G. Schreiber // Protein Engineering, Design and Selection. – 2017. – T. 30. – № 3. – P. 151-158, DOI: 10.1093/protein/gzw053.

  1. Whiteley, C.G. Mechanistic and Kinetic Studies of Inhibition of Enzymes / C.G. Whiteley // Cell Biochemistry and Biophysics. – 2020. – T. 33. – № 3. – P. 217-225. DOI: 10.1385/cbb:33:3:217.

  1. Abraham, D.J. Burger's Medicinal Chemistry & Drug Discovery. Vol. 1 (6th Edition); Abraham, D.J., Ed. – John Wiley and Sons: Weinheim, Germany, 2003. – 932 p.

  1. Walsh, R. Limitations of conventional inhibitor classifications / R. Walsh, E. Martin, S. Darvesh // Integrative Biology. – 2011. – T. 3. – № 12. – Р. 1197. DOI: 10.1039/c1ib00053e.

  1. Sauro, H.M. Enzyme Kinetics for Systems Biology / H.M. Sauro. – Ambrosius Publishing, 2011. – 308 p.

  1. Noor, E. A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects / E. Noor, A. Flamholz, W. Liebermeister, A. Bar-Even, R. Milo // FEBS Letters. – 2012. – № 587. – P. 2772-2777. DOI: 10.1016/j.febslet.2013.07.028.

  1. Yadav, G.D. Kinetic Modelling of Enzyme Catalyzed Biotransformation Involving Activations and Inhibitions / G.D. Yadav, D.B. Magadum // In: Enzyme Inhibitors and Activators; Şentürk, M., Ed. – IntechOpen: New Delhi, India, 2017. – P. 73-124. DOI: 10.5772/67692.

  1. Robin, T. Single-molecule theory of enzymatic inhibition / T. Robin, S. Reuveni, M. Urbakh // Nat Commun. – 2018. – № 9. – Р. 779. DOI: 10.1038/s41467-018-02995-6.

  1. Lloyd, M.D. Steady-state enzyme kinetics / M.D. Lloyd // Biochem (Lond.). – 2021. – T. 43. – № 3. – P. 40-45. DOI: 10.1042/bio_2020_109.

  1. Tummler, K. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling / K. Tummler, T. Lubitz, M. Schelker, E. Klipp // J. FEBS. – 2014. – № 281. – P. 549-571. DOI: 10.1111/febs.12525.

  1. Rogers, A. Enzyme Kinetics: Theory and Practice / A. Rogers, Y. Gibon // In: Plant Metabolic Networks; Schwender, J., Ed. – Springer: New York, NY, 2009. – P. 71-103. DOI: 10.1007/978-0-387-78745-9_4.

  1. Hill, A. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves / A. Hill // J. Physiol. – 1910. – № 40. – P. iv–vii.

Контакты:

Кондратенко Владимир Владимирович
nauka@vniitek.ru
Петров Андрей Николаевич
apetrovmilk@yandex.ru
Кондратенко Татьяна Юрьевна
t.kondratenko@fncps.ru

Для цитирования:

Кондратенко, В.В. Основные представления о кинетике ферментативных процессов и подходах к её определению / В.В. Кондратенко, А.Н. Петров, Т.Ю. // Все о мясе. – 2022. – № 6. – С. 12-19. DOI: 10.21323/2071-2499-2022-6-12-19.

For citation:

Kondratenko, V.V. Basic notions for kinetics of enzymatic processes and approaches to its determination / V.V. Kondratenko, A.N. Petrov, T.Yu. Kondratenko // Vsyo o myase. – 2022. – № 6. – Р. 12-19. DOI: 10.21323/2071-2499-2022-6-12-19.





Политика конфиденциальности

Противодействие коррупции

Карта сайта

Яндекс цитирования Яндекс.Метрика