Вход для сотрудников

Федеральное государственное бюджетное научное учреждение
«ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР ПИЩЕВЫХ СИСТЕМ
ИМ. В.М.ГОРБАТОВА»
Российской Академии Наук

УДК 532.528:57.037
Табл. 2. Ил. 2. Библ. 82.

DOI: 10.21323/2071-2499-2022-5-38-45

Особенности применения ультразвуковой кавитации для обработки жидкообразных сред

Федосенко Т.В., Кондратенко Т.Ю., Кондратенко В.В., канд. техн. наук
Всероссийский научно-исследовательский институт технологии консервирования – филиал ФГБНУ «Федеральный научный цент пищевых систем им. В.М. Горбатова» РАН
Ключевые слова: ультразвуковая кавитация, жидкообразные среды, сонохимические процессы, коллапс кавитационных каверн, динамика каверн,
Реферат:
В работе показано, что в результате ультразвуковой кавитационной обработки жидкообразных сред возможно существенно интенсифицировать физико-химические процессы при глубокой переработке биомассы растительного и животного происхождения, что особенно перспективно при обработке такой сложной биогенной матрицы, как мясо. При определённых условиях могут быть инициированы сонохимические процессы, основная масса которых приходится на радикалообразование. Однако имеет место обратная корреляция их интенсивности с частотой ультразвукового излучения. Эффективность кавитационной обработки определяется характером динамики образующихся каверн. Существует несколько моделей её математического описания: от простых со многими допущениями до комплексных, учитывающих большой массив факторов. Анализ моделей показывает, что на проявление кавитационного эффекта значимое влияние оказывает интенсивность ультразвукового излучения. При её увеличении эффект кавитационного воздействия возрастает. В то же время частота излучения является фактором, избирательно определяющим эффективность воздействия на отдельные компоненты сложных многокомпонентных биогенных матриц частиц дисперсной фазы жидкообразных сред. На фундаментальном уровне основными факторами, определяющими условия реализации ультразвукового кавитационного процесса, являются физико-химические свойства среды (плотность, вязкость, коэффициент поверхностного натяжения) и активные факторы воздействия (частота излучения, интенсивность, гидравлическое давление, температура и продолжительность). Использование ультразвуковой кавитации имеет широкие перспективы эффективного применения при обработке гомо-, так и гетерофазных жидкообразных сред, в том числе с включением дисперсных частиц.


Features of using ultrasonic cavitation for liquid-like media processing

Fedosenko T.V., Kondratenko T.Yu., Kondratenko V.V.
Russian Research Institute of Canning Technology – branch of Gorbatov Federal Research Center for Food Systems
Key words: ultrasonic cavitation, liquid-like media, sonochemical processes, collapse of cavitation cavities, bubble dynamics
Summary:
As a result of ultrasonic cavitation processing of liquid-like media, it is possible to significantly intensify physicochemical processes in deep processing of plant and animal biomass, which is especially promising for processing such a complex biogenic matrix as meat. Under certain conditions, sonochemical processes can be initiated. Most of them fall on radical formation. However, there is an inverse correlation of their intensity with the frequency of ultrasonic radiation. The effectiveness of cavitation processing is determined by the nature of bulb dynamics. There are several models of its mathematical description: from simple ones with many assumptions to complex ones that take into account a large array of factors. Models analysis shows that the intensity of ultrasonic radiation has a significant effect on the manifestation of the cavitation effect. With its increase, the effect of cavitation increases as well. At the same time, the radiation frequency is a factor that selectively determines the effectiveness of the effect on individual components of complex multicomponent biogenic matrices of dispersed phase particles in liquid-like media. At the fundamental level, the main factors determining the conditions for the implementation of the ultrasonic cavitation process are the physicochemical properties of the medium (density, viscosity, surface tension) and the exposure active factors (cure rate, intensity, hydraulic pressure, temperature and duration). The use of ultrasonic cavitation has broad prospects for effective use for processing of homo- and heterophase liquid-like media, including the dispersed particles.


СПИСОК ЛИТЕРАТУРЫ / REFERENCES:

  1. Savenkova, T.V. Mechanisms of destruction and synthesis of liquid media, used in the food industry under non-equilibrium conditions / T.V. Savenkova, A.R. Karimov, M.A. Taleysnik, T.V. Gerasimov, N.B. Kondratev // Food systems. 2019. – Т. 2. – № 4. – Р. 38-41. DOI: 10.21323/2618-9771-2019-2-4-38-41.

  1. Руденко, О.С. Влияние кавитационной обработки плодоовощного сырья на органолептические показатели кондитерских изделий / О.С. Руденко, М.А. Пестерев, М.А. Талейсник, Н.Б. Кондратьев, А.Д. Сакеллари // Все о мясе. – 2020. – № 5S. – С. 304-308. DOI: 10.21323/2071–2499–2020–5S-304-308.

Rudenko, O.S. Vliyaniye kavitatsionnoy obrabotki plodoovoshchnogo syr'ya na organolepticheskiye pokazateli konditerskikh izdeliy [Influence of cavitation processing of vegetable raw materials on organoleptic indicators of confectionery] / O.S. Rudenko, M.A. Pesterev, M.A. Taleysnik, N.B. Kondratyev, A.D. Sakellari // Vsyo o myase. – 2020. – № 5S. – Р. 304-308. DOI: 10.21323/2071-2499-2020-5S-304-308.

  1. Горбунова, Н.А. Альтернативные технологии – ультразвук в мясной промышленности (по материалам зарубежной литературы) / Н.А. Горбунова // Все о мясе. – 2016. – № 2. – С. 37-41.

Gorbunova, N.A. Al'ternativnyye tekhnologii – ul'trazvuk v myasnoy promyshlennosti (po materialam zarubezhnoy literatury) [Alternative technologies – ultrasound in meat industry (on the materials of foreign literature)] / N.A. Gorbunova // Vsyo o myase. – 2016. – № 2. – Р. 37-41.

  1. Galloway, W.J. An experimental study of acoustically induced cavitation in liquids / W.J. Galloway // J. Acoust. Soc. Am. – 1954. – № 26. – P. 849-857. DOI: 10.1121/1.1907428.

  1. Lepoint, T. Theoretical bases / T. Lepoint, F. Lepoint-Mullié // In: Synthetic organic sonochemistry; J.L. Luche, Ed.; Springer: New York, USA, 1998. – P. 1-49. DOI: 10.1007/978-1-4899-1910-6_1.

  1. Sancheti, S.V. A review of engineering aspects of intensification of chemical synthesis using ultrasound / S.V. Sancheti, P.R. Gogate // Ultrason Sonochem. – 2017. – № 36. – P. 527-543. DOI: 10.1016/j.ultsonch.2016.08.009.

  1. Suslick, K.S. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation / K.S. Suslick, D.J. Flannigan // Annu Rev Phys Chem. – 2008 – № 59. – P. 659-683. DOI: 10.1146/annurev.physchem.59.032607.093739.

  1. Ahluwalia, V.K. Ultrasound Assisted Green Synthesis / V.K. Ahluwalia, M. Kidwai // In: New Trends in Green Chemistry; Dordrecht: London, Great Britain. – 2004. – P. 73-86. DOI: 10.1007/978-1-4020-3175-5_10.

  1. Rajendran, V. Ultrasound assisted synthesis of diethyl-2,20-thioacetate with 2-bromoethylacetate under a new polymer-supported phasetransfer catalyst in solid–liquid condition / V. Rajendran, K. Harikumar // Chem Sci J., – 2015. – № 6. – P. 2. DOI: 10.4172/2150-3494.100094.

  1. Estifaee, P. CO-oxidation over sonochemically synthesized Pd-Cu/Al2O3 nanocatalyst used in hydrogen purification: effect of Pd loading and ultrasound irradiation time / P. Estifaee, M. Haghighi, N. Mohammadi, F. Rahmani // Ultrason. Sonochem. – 2014. – № 21. – P. 1155-1165. DOI: 10.1016/j.ultsonch.2013.11.019.

  1. Nasrollahzadeh, M. Ultrasound-promoted green approach for the synthesis of sulfonamides using natural, stable and reusable Natrolite nanozeolite catalyst at room temperature / M. Nasrollahzadeh, A. Ehsani, A. Rostami-Vartouni // Ultrason. Sonochem. – 2014. – № 21. – P. 275-282. DOI: 10.1016/j.ultsonch.2013.07.012.

  1. Singh, V. Ultrasound: a boon in the synthesis of organic compounds / V. Singh, K.P. Kaur, A. Khurana, G.L. Kad // Resonance. – 1998. – № 9. – P. 56-60. DOI: https://doi.org/10.1007/BF02836081.

  1. Mason, T.J. Ultrasound in synthetic organic chemistry / T.J. Mason // Chem. Soc. Rev. – 1997. – № 26. – P. 443-451. DOI: 10.1039/CS9972600443.

  1. Mason, T.J. Sonochemistry / T.J. Mason, P. Cintas // In: Handbook of Green Chemistry and Technology; Clark, J.H., Macquarrie, D., Eds.; Blackwell, 2002. – P. 372-396. DOI: 10.1002/9780470988305.ch16.

  1. Cravotto, G. Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects / G. Cravotto, E. Borretto, M. Oliverio, A. Procopio, A. Penoni // Cat. Commun. – 2015. – № 63. – P. 2-9. DOI: 10.1016/j.catcom.2014.12.014.

  1. Mirza-Aghayan, M. Ultrasound assisted direct oxidative esterification of aldehydes and alcohols using graphite oxide and oxone / M. Mirza-Aghayan, S. Zonoubi, M. Molaee, R. Boukherroub // Ultrason. Sonochem. – 2015. – № 22. – P. 359-364. DOI: 10.1016/j.ultsonch.2014.05.012.

  1. Li, D. Optimization of the ultrasound-assisted synthesis of lutein disuccinate using uniform design / D. Li, J. Song, A. Xu, C. Liu // Ultrason. Sonochem. – 2014. – T. 1. – № 21. – P. 98-103. DOI: 10.1016/j.ultsonch.2013.06.004.

  1. Waghmare, G.V. Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate / G.V. Waghmare, M.D. Vetal, V.K. Rathod // Ultrason. Sonochem. – 2015. – № 22. – P. 311-316. DOI: 10.1016/j.ultsonch.2014.06.018.

  1. Mahmoodi, N.O. Ultrasound-promoted one-pot five-components synthesis of biologically active novel bis((6-alkyl or phenyl-2-phenylpyrimidine-4-yl)oxy) alkane or methyl benzene derivatives / N.O. Mahmoodi, S. Shoja, K. Tabatabaeian, B. Sharifzadeh // Ultrason. Sonochem. – 2015. – № 23. – P. 31-36. DOI: 10.1016/j.ultsonch.2014.09.001.

  1. Safari, J. Ultrasound assisted the green synthesis of 2-amino-4Hchromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst / J. Safari, L. Javadian // Ultrason. Sonochem. – 2015. – № 22. – P. 341-348. DOI: 10.1016/j.ultsonch.2014.02.002.

  1. Dange, P.N. Ultrasound assisted synthesis of methyl butyrate using heterogeneous catalyst / P.N. Dange, A.V. Kulkarni, V.K. Rathod // Ultrason. Sonochem. – 2015. – № 26. – P. 257-264. DOI: 10.1016/j.ultsonch.2015.02.014.

  1. Yasui, K. A new formulation of bubble dynamics for sonoluminescence (PhD thesis) / K. Yasui. – Waseda University, Japan, 1996. – 187 p.

  1. Yasui, K. Theoretical study of the ambientpressure dependence of sonochemical reactions / K. Yasui, T. Tuziuti, Y. Iida, H. Mitome // J. Chem. Phys. – 2003. – № 119. – P. 346-356. DOI: 10.1063/1.1576375.

  1. Toegel, R. Phase diagrams for sonoluminescing bubbles: a comparison between experiment and theory / R. Toegel, D. Loshe // J. Chem. Phys. – 2003. – № 118. – P. 1863-1875. DOI: 10.1063/1.1531610.

  1. Merouani, S. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters / S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini // Ultrasonics. – 2014. – № 54. – P. 227-232. DOI: 10.1016/j.ultras.2013.04.014.

  1. Sivasankar, T. Mechanistic approach to enhancement of the yield of a sonochemical reaction / T. Sivasankar, A.W. Paunikar, V.S. Moholkar // AIChE. – 2007. – № 53. – P. 1132-1143. DOI: 10.1002/aic.11170.

  1. Merouani, S. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles / S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini // Ultrason. Sonochem. – 2014. – № 21. – P. 53-59. DOI: 10.1016/j.ultsonch.2013.05.008.

  1. Xu, S. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method / S. Xu, Y. Zong, W. Li, S. Zhang, M. Wan // Ultrason. Sonochem. – 2014. – № 21. – P. 975-983. DOI: 10.1016/j.ultsonch.2013.11.016.

  1. Thiemann, A. Characterization of an acoustic cavitation bubble structure at 230 kHz / A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, A. Lippert // Ultrason. Sonochem. – 2011. – T. 18. – № 2. – P. 595-600. DOI: 10.1016/j.ultsonch.2010.10.004.

  1. Iida, Y. Bubble population phenomena in sonochemical reactor: estimation of bubble size distribution and its number density with pulsed sonication – laser diffraction method / Y. Iida, M. Ashokkumar, T. Tuziuti, T. Kozuka, K. Yasui, A. Towada, J. Lee // Ultrason. Sonochem. – 2010. – T. 17. – № 2. – P. 473-479. DOI: 10.1016/j.ultsonch.2009.08.018.

  1. Labouret, S. Distribution en tailles des bulles d’un champ de cavitation ultrasonore / S. Labouret, J. Frohly // 10ème Congrès Français d’Acoustique. – Lyon, France, 2010. – hal-00551151.

  1. Chen, W.-S. The disappearance of ultrasound contrast bubbles: observations of bubble dissolution and cavitation nucleation / W.-S. Chen, T.J. Matula, L.A. Crum // Ultrasound Med. Biol. – 2002. – T. 28. – № 6. – P. 793-803. DOI: 10.1016/S0301-5629(02)00517-3.

  1. Yasui, K. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions / K. Yasui, T. Tuziuti, J. Lee, T. Kozuka, A. Towada // J. Chem. Phys. – 2008. – № 128. – P. 184705. DOI: 10.1063/1.2919119.

  1. Pétrier, C. Ultrasonic wastewater treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation / C. Pétrier, A. Francony // Ultrason. Sonochem. – 1997. – № 4. – P. 295-300. DOI: 10.1016/s1350-4177(97)00036-9.

  1. Jiang, Y. Sonolysis of 4-chlorophenol in aqueous solution: effects of substrate concentration, aqueous temperature and ultrasonic frequency / Y. Jiang, C. Petrier, T.D. Waite // Ultrason. Sonochem. – 2006. – № 13. – P. 415-422. DOI: 10.1016/j.ultsonch.2005.07.003.

  1. Burdin, F. Characterization of the acoustic cavitation cloud by two laser techniques / F. Burdin, N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm, H. Delmas // Ultrason. Sonochem. – 1999. – № 6. – P. 43-51. DOI: 10.1016/s1350-4177(98)00035-2.

  1. Tsochatzidis, N.A. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique / N.A. Tsochatzidis, P. Guiraud, A. Wilhelm, H. Delmas // Chem. Eng. Sci. – 2001. – № 56. – P. 1831-1840. DOI: 10.1016/S0009-2509(00)00460-7.

  1. Brotchie, A. Effect of power and frequency on bubble-size distributions in acoustic cavitation / A. Brotchie, F. Grieser, M. Ashokkumar // Phys. Rev. Lett. – 2009. – № 102. – P. 084302. DOI: 10.1103/PhysRevLett.102.084302.

  1. Merouani, S. A method for predicting the number of active bubbles in sonochemical reactors / S. Merouani, H. Ferkous, O. Hamdaoui, Ya. Rezgui, M. Guemini // Ultrason. Sonochem. – 2015. – № 22. – P. 51-58. DOI: 10.1016/j.ultsonch.2014.07.015.

  1. Kerboua, K. Computational study of state equation effect on single acoustic cavitation bubble’s phenomenon / K. Kerboua, O. Hamdaoui // Ultrason. Sonochem. – 2017. – № 38. – P. 174-188. DOI: 10.1016/j.ultsonch.2017.03.005.

  1. Cravotto, G. Molecular self-assembly and patterning induced by sound waves. The case of gelation / G. Cravotto, P. Cintas // Chem. Soc. Rev. – 2009. – № 38. – P. 2684-2697. DOI: 10.1039/B901840A.

  1. Lighthill, J. Acoustic streaming / J. Lighthill // J. Sound Vib. – 1978. – № 61. – P. 391-418. DOI: 10.1016/0022-460X(78)90388-7.

  1. Trujillo, F.J. CFD modelling of the acoustic streaming induced by an ultrasonic horn reactor / F.J. Trujillo, A.K. Knoerzer // In: Seventh International Conference on CFD in the Minerals and Process Industries. – Melbourne: CSIRO. – 2009.

  1. Nastac, L. Multiscale modeling of the solidification microstructure evolution in the presence of ultrasonic stirring / L. Nastac // Mater. Sci. Eng. – 2012. – № 33. – P. 012079. DOI: 10.1088/1757-899X/33/1/012079.

  1. van Wijngaarden, L. On the equations of motion for mixtures of liquid and gas bubbles / L. van Wijngaarden // J. Fluid Mech. – 1968 – № 33. – P. 465-474. DOI: 10.1017/S002211206800145X.

  1. Commander, K.W. Linear pressure waves in bubbly liquids: Comparison between theory and experiments / K.W. Commander, A. Prosperetti // J. Acoust. Soc. Am. – 1989. – T. 85. – № 2. – P. 732-746. DOI: 10.1121/1.397599.

  1. Jamshidi, R. Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation / R. Jamshidi, B. Pohl, U.A. Peuker, G. Brenner // Chem. Eng. J. – 2012. – № 189-190. – P. 364-375. DOI: 10.1016/j.cej.2012.02.029.

  1. Xu, Z. Numerical simulation of liquid velocity distribution in a sonochemical reactor / Z. Xu, K. Yasuda, S. Koda // Ultrason. Sonochem. – 2013. – № 20. – P. 452-459. DOI: 10.1016 / j.ultsonch.2012.04.011.

  1. Raman, V. local cavitation events in high intensity ultrasound (HIU) fields / V. Raman, A. Abbas, J.S. Chandrakant // In: COMSOL Users Conference. – Bangalore, 2006.

  1. Sajjadi, B. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: Mathematical and 3D computational simulation / B. Sajjadi, A.A.A. Raman, Sh. Ibrahim // Ultrason. Sonochem. – 2015. – № 24. – P. 193-203. DOI: 10.1016/j.ultsonch.2014.11.013.

  1. Joseph, D.D. Potential Flows of Viscous and Viscoelastic Fluids / D.D. Joseph, T. Funada, J. Wang. – Cambridge University Press, 2007. DOI: 10.1017/CBO9780511550928.010.

  1. Wang, J. Purely irrotational theories of the effect of the viscosity on the decay of free gravity waves / J. Wang, D.D. Joseph // J. Fluid Mech. – 2006. – № 559. – P. 461-472. DOI: 10.1017/S0022112006000401.

  1. Padrino, J.C. Viscous effects on Kelvin-Helmholtz instability in a channel / J.C. Padrino, D.D. Joseph, H. Kim // J. Fluid Mech. – 2011. – № 680. – P. 398-416. DOI: 10.1017/jfm.2011.206.

  1. Popinet, S. Bubble collapse near a solid boundary: a numerical study of the influence of viscosity / S. Popinet, S. Zaleski // J. Fluid Mech. – 2002. – № 464. – P. 137-163. DOI: 10.1017/S002211200200856X.

  1. Lind, S.J. The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces / S.J. Lind, T.N. Phillips // Phys. Fluids. – 2013. – T. 25. – № 2. – P. 022104–022135. DOI: 10.1063/1.4790512.

  1. Klaseboer, E. BEM simulations of potential flow with viscous effects as applied to a rising bubble / E. Klaseboer, R. Manica, D.Y.C. Chan, B.C. Khoo // Eng. Anal. Boundary Elem. – 2011. – № 35. – P. 489-494. DOI: 10.1016/j.enganabound.2010.09.005.

  1. Zhang, A.M. Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous effects / A.M. Zhang, B.Y. Ni // Comput. Fluids. – 2014. – № 92. – P. 22-33. DOI: 10.1016/j.compfluid.2013.12.020.

  1. Lundgren, T.S. Oscillations of drops in zero gravity with weak viscous effect / T.S. Lundgren, N.N. Mansour // J. Fluid Mech. – 1988. – № 194. – P. 479-510. DOI: 10.1017/S0022112088003076.

  1. Leighton, T.G. Bubble population phenomena in acoustic cavitation / T.G. Leighton // Ultrason. Sonochem. – 1995. – T. 2. – № 2. – P. S123-S136. DOI: 10.1016/1350-4177(95)00021-W.

  1. Wang, Q.X. Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound / Q.X. Wang, K. Manmi // Phys. Fluids. – 2014. – T. 26. – № 3. – P. 032104. DOI: 10.1063/1.4866772.

  1. Manmi, K. Acoustic microbubble dynamics with viscous effects / K. Manmi, Q. Wang // Ultrason. Sonochem. – 2017. – № 36. – P. 427-436. DOI: 10.1016/j.ultsonch.2016.11.032.

  1. Sajjadi, B. Investigation of mass transfer intensification under power ultrasound irradiation using 3D computational simulation: A comparative analysis / B. Sajjadi, S. Asgharzadehahmadi, P. Asaithambi, A.A.A. Raman, R. Parthasarathy // Ultrason. Sonochem. – 2017. – № 34. – P. 504-518. DOI: 10.1016/j.ultsonch.2016.06.026.

  1. Vichare, N.P. Energy analysis in acoustic cavitation / N.P. Vichare, , P. Senthilkumar, , V.S. Moholkar, , P.R. Gogate, , A.B. Pandit // Ind. Eng. Chem. Res. – 2000. – № 39. – P. 1480-1486. DOI: 10.1021/ie9906159.

  1. Zhang, Y. Heat transfer across interfaces of oscillating gas bubbles in liquids under acoustic excitation / Y. Zhang // Int. Commun. Heat Mass Transfer. – 2013. – № 43. – P. 1-7. DOI: 10.1016/j.icheatmasstransfer.2013.01.007.

  1. Yasui, K. Alternative model of single bubble sonoluminescence / K. Yasu // Phys. Rev. E. – 1997. – № 56. – P. 6750-6760. DOI: 10.1103/PhysRevA.65.054304.

  1. Storey, B.D. Water vapour, sonoluminescence and sonochemistry / B.D. Storey, A.J. Szeri // R. Soc. – 2000. – № 456. – P. 1685-1709. DOI: 10.1098/rspa.2000.0582.

  1. Keller, J.B. Bubble oscillation of large amplitude / J.B. Keller, M. Miksis // Acoust. Soc. Am. – 1980. – № 68. – P. 628-633. DOI: 10.1121/1.384720.

  1. Kerboua, K. Insights into numerical simulation of controlled ultrasonic waveforms driving single cavitation bubble activity / K. Kerboua, Ou. Hamdaoui // Ultrason. Sonochem. – 2018. – P. 43:237-247, DOI: 10.1016/j.ultsonch.2018.01.018.

  1. Mason, T.J. The extraction of natural products using ultrasound or microwaves / T.J. Mason, F. Chemat, M. Vinatoru // Curr. Org. Chem. – 2011. – № 15. – Р. 237-247. DOI: 10.2174/138527211793979871.

  1. Firouz, M.S. Power ultrasound in the meat industry (freezing, cooking and fermentation): Mechanisms, advances and challenges / M.S. Firouz, H. Sardari, P.A. Chamgordani, M. Behjati // Ultrason. Sonochem. – 2022. – № 86. – P. 106027. DOI: 10.1016/j.ultsonch.2022.106027.

  1. Rosenfeld, E. The influence of ultrasound on the reaction of immobilized enzymes / E. Rosenfeld, P. Schmidt // Arch. Acoust. – 1984. – T. 9. – № 1-2. – P. 105-112.

  1. Frenkel, Y.I. Electrical phenomena connected with cavitation caused by ultrasonic oscillation in a liquid / Y.I. Frenkel // Russ. J. Phys. Chem. – 1940. – № 14. – P. 305-308.

  1. Margulis, M.A. Sonoluminescence and sonochemical reactions in cavitation fields. A review / M.A. Margulis // Ultrasonics. – 1985. – T. 23. – № 4. – P. 157-169. DOI: 10.1016/0041-624X(85)90024-1.

  1. Nikitenko, S.I. Plasma Formation during Acoustic Cavitation: Toward a New Paradigm for Sonochemistry / S.I. Nikitenko // Advances in Physical Chemistry. – 2014. – Article ID 173878. DOI: 10.1155/2014/173878.

  1. Mason, T.J. Some neglected or rejected paths in sonochemistry – A very personal view / T.J. Mason // Ultrason. Sonochem. – 2015. – № 25. – P. 89-93. DOI: 10.1016/j.ultsonch.2014.11.014.

  1. Wiggins, K.M. Methods for activating and characterizing mechanically responsive polymers / K.M. Wiggins, J.N. Brantley, C.W. Bielawski // Chem. Soc. Rev. – 2013. – № 42. – P. 7130-7147. DOI: 10.1039/C3CS35493H.

  1. Cravotto, G. On the mechanochemical activation by ultrasound / G. Cravotto, E. Calcio Gaudino, P. Cintas // Chem. Soc. Rev. – 2013. – № 42. – P. 7521-7534. DOI: 10.1039/C2CS35456J.

  1. May, P.A. Polymer mechanochemistry: techniques to generate molecular force via elongational flows / P.A. May, J.S. Moore // Chem. Soc. Rev. – 2013. – № 42. – P. 7497-7506. DOI: 10.1039/C2CS35463B.

  1. Mason, T.J. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound / T.J. Mason, A.J. Cobley, J.E. Graves, D. Morgan // Ultrason. Sonochem. – 2011. – № 18. – P. 226-230. DOI: 10.1016/j.ultsonch.2010.05.008.

  1. Tran, K.V.B. Quantification of frequency dependence of mechanical effects induced by ultrasound / K.V.B. Tran, T. Kimura, T. Kondo, S. Koda // Ultrason. Sonochem. – 2014. – № 21. – P. 716-721. DOI: 10.1016/j.ultsonch.2013.08.018.

  1. Qian, J. The effect of ultrasonic intensity on physicochemical properties of Chinese fir / J. Qian, Ya. Li, Ji. Gao, Z. He, S. Yi // Ultrason. Sonochem. – 2020. – № 64. – P. 104985. DOI: 10.1016/j.ultsonch.2020.104985.

  1. Mason, T.J. The uses of power ultrasound in chemistry and processing / T.J. Mason, J.P. Lorimer // In: Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing; Wiley‐VCH Verlag GmbH, 2002. – P. 267-293. DOI: 10.1002/352760054X.ch7.


Контакты:

Федосенко Татьяна Васильевна
fedosenko@vniitek.ru
Кондратенко Татьяна Юрьевна
t.kondratenko@fncps.ru
Кондратенко Владимир Владимирович
nauka@vniitek.ru

Для цитирования:

Федосенко, Т.В. Особенности применения ультразвуковой кавитации для обработки жидкообразных сред / Т.В. Федосенко, Т.Ю. Кондратенко, В.В. Кондратенко // Все о мясе. – 2022. – № 5. – С. 38-45. DOI: 10.21323/2071-2499-2022-5-38-45.

For citation:

Fedosenko, T.V. Features of using ultrasonic cavitation for liquid-like media processing / T.V. Fedosenko, T.Yu. Kondratenko, V.V. Kondratenko // Vsyo o myase. – 2022. – № 5. – Р. 38-45. DOI: 10.21323/2071-2499-2022-5-38-45.





Политика конфиденциальности

Противодействие коррупции

Карта сайта

Яндекс цитирования Яндекс.Метрика