Вход для сотрудников

Федеральное государственное бюджетное научное учреждение
«ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР ПИЩЕВЫХ СИСТЕМ
ИМ. В.М.ГОРБАТОВА»
Российской Академии Наук

УДК 57.033
Ил. 5. Библ. 44.

DOI: 10.21323/2071-2499-2023-3-64-69

Оценка роста «пищевых» микроорганизмов порчи в модельных средах

Батаева Д.С., канд. техн. наук, Грудистова М.А., канд. техн. наук, Юшина Ю.К., доктор техн. наук, Дерюгин В.К.
ФНЦ пищевых систем им. В.М. Горбатова
Ключевые слова: рН, срок годности, упаковка, лаг-фаза, потенциал роста,
Реферат:
Целью исследования было изучение влияния различных условий культивирования и значений рН среды на характер роста штаммов микроорганизмов порчи с учётом их внутривидовой гетерогенности. Условия культивирования бактерий имитировали способы упаковывания пищевых продуктов: аэробными условиями культивирования имитировали фасовку, микроаэрофильными условиями имитировали хранение в модифицированной газовой атмосфере и анаэробными условиями – упаковку под вакуумом. Объектами исследования служили штаммы бактерий: Brochothrix thermosphacta, Serratia liquefaciens и Carnobacterium maltaromaticum, культивируемые в аэробных, микроаэрофильных и анаэробных условиях в модельных средах с различными значениями рН. Все 3 штамма Brochothrix thermosphacta обладали разным потенциалом роста, в отличии от штаммов Serratia liquefaciens. Установлен высокий потенциал роста в аэробных и микроаэрофильных условиях B. thermosphacta и S. liquefaciens. Отмечен преимущественный рост в анаэробных условиях Carnobacterium maltaromaticum. Определена длительность лаг-фазы Carnobacterium maltaromaticum № 188 в модельных средах со значениями рН = 6,01, 6,52 и 7,19. Она составляла 13±1 ч. Снижение рН до 5,46 сказалось критично на длительности лаг-фазы и её удлинение более чем 24 часов. Установлено, что штамм Serratia liquefaciens № 812 при рН = 7,36 обладал максимальной активностью роста (1,84 ед. ОП) по сравнению с Carnobacterium maltaromaticum № 188 и Brochothrix thermosphacta № 1957 в аэробных условиях, при этом длительность фазы задержки роста составляла 6 ч. Однако при рН = 7,19 оптическая плотность роста этого микроорганизма увеличилась до 2,29 единиц. При аэробном культивировании штаммов Brochothrix thermosphacta № 1957 и Carnobacterium maltaromaticum № 188 в модельных средах с рН = 7,27 и 7,19, соответственно, было установлено, что длительность лаг-фазы роста достигала 13 ч.


Evaluation of the growth of food spoilage microorganisms in model media

Bataeva D.S., Grudistova M.A., Yushina Yu.K., Deryugin V.K.
Gorbatov Research Center for Food Systems
Key words: shelf life, lag phase, packaging, growth potential, pH
Summary:
The aim of the study was to investigate the influence of various cultivation conditions and pH values of the medium on the growth pattern of strains of spoilage microorganisms taking into account their intraspecific heterogeneity. The bacteria cultivation conditions imitated food packaging methods: aerobic cultivation conditions imitated prepackaging, microaerophilic conditions imitated storage in a modified gas atmosphere, and anaerobic conditions imitated packaging under vacuum. The objects of the study were strains of bacteria Brochothrix thermosphacta, Serratia liquefaciens and Carnobacterium maltaromaticum cultivated under aerobic, microaerophilic, and anaerobic conditions in model media with different pH values. All three strains of Brochothrix thermosphacta had different growth potential in contrast to strains of Serratia liquefaciens. A high growth potential under aerobic and microaerophilic conditions has been established for B. thermosphacta and S. liquefaciens. The predominant growth under anaerobic conditions of Carnobacterium maltaromaticum was noted. The duration of the lag phase of Carnobacterium maltaromaticum No. 188 was determined in model media with pH values of 6.01, 6.52, and 7.19. It was 13±1 h. The decrease in pH to 5.46 had a critical effect on the duration of the lag phase and its lengthening by more than 24 hours. It was established that strain Serratia liquefaciens No. 812 at pH = 7.36 had the maximum growth activity (1.84 OD units) in comparison with Carnobacterium maltaromaticum No. 188 and Brochothrix thermosphacta No. 1957 under aerobic conditions, while the duration of the growth retardation phase was 6 h. However, at pH = 7.19 the optical density of growth of this microorganism increased to 2.29 units. During aerobic cultivation of strains Brochothrix thermosphacta No. 1957 and Carnobacterium maltaromaticum No. 188 in model media with pH = 7.27 and 7.19, respectively, it was found that the duration of the lag-phase of growth reached 13 hours.


СПИСОК ЛИТЕРАТУРЫ / REFERENCES:

Borch, E. Bacterial spoilage of meat and cured meat products / E. Borch, M.L. Kant-Muermans, Y. Blixt // International journal of food microbiology. – 1996. – Т. 33. – № 1. – С. 103-120. DOI: 10.1016/0168-1605(96)01135-X.

Samelis, J. Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4 C / J. Samelis, A. Kakouri, J. Rementzis // Food Microbiology. – 2000. – Т. 17. – № 3. – С. 329-340. DOI: 10.1006/fmic.1999.0316.

Casaburi, A. Bacterial populations and the volatilome associated to meat spoilage / A. Casaburi, P. Piombino, G.J. Nychas, F. Villani, D. Ercolini // Food microbiology. – 2015. – V. 45. – P. 83-102. DOI: 10.1016/j.fm.2014.02.002.

Doulgeraki, A.I. Spoilage microbiota associated to the storage of raw meat in different conditions / A.I. Doulgeraki, D. Ercolini, F. Villani, G.J.E. Nychas // International journal of food microbiology. – 2012. – V. 157. – № 2. – P. 130-141. DOI: 10.1016/j.ijfoodmicro.2012.05.020.

Pennacchia, C. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack / C. Pennacchia, D. Ercolini, F. Villani // Food microbiology. – 2011. – V. 28. – № 1. – P. 84-93. DOI: 10.1016/j.fm.2010.08.010.

Mikš-Krajnik, M. Volatile chemical spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition in relation to microbiological and sensory shelf lives / M. Mikš-Krajnik, Y.J.Yoon, D.O. Ukuku, H.G. Yuk // Food Microbiology. – 2016. – V. 53. – P. 182-191. DOI: 10.1016/j.fm.2015.10.001.

Iulietto, M.F. Meat spoilage: a critical review of a neglected alteration due to ropy slime producing bacteria / M.F. Iulietto, P. Sechi, E. Borgogni, B.T. Cenci-Goga // Italian Journal of Animal Science. – 2015. – V. 14. – № 3. – P. 4011. DOI: 10.4081/ijas.2015.4011.

Illikoud, N. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta / N. Illikoud, A. Rossero, R. Chauvet, P. Courcoux, M.F. Pilet, T. Charrier, M. Zagorec // Food microbiology. – 2019. – V. 81. – P. 22-31. DOI: 10.1016/j.fm.2018.01.015.

Kakouri, A. Storage of poultry meat under modified atmospheres or vacuum packs: possible role of microbial metabolites as indicator of spoilage / A. Kakouri, G.J.E. Nychas // Journal of Applied Bacteriology. – 1994. – V. 76. – № 2. – P. 163-172. DOI: 10.1111/j.1365-2672. 1994.tb01612.x.

Collins-Thompson, D.L. Influence of sodium nitrite, temperature, and lactic acid bacteria on the growth of Brochothrix thermosphacta under anaerobic conditions / D.L. Collins-Thompson, G.R. Lopez // Canadian Journal of Microbiology. – 1980. – V. 26. – № 12. – P. 1416-1421. DOI: 10.1139/m80-236.

Gardner, G.A. Brochothrix thermosphacta (Microbacterium thermosphactum) in the spoilage of meats: a reveiw / G.A. Gardner // Psychrotrophic microorganisms in spoilage and pathogenicity/edited by TA Roberts...[et al.]. – 1981.

Gaillac, A. Exploring the Diversity of Biofilm Formation by the Food Spoiler Brochothrix thermosphacta / A. Gaillac, R. Briandet, E. Delahaye, J. Deschamps, E. Vigneau, P. Courcoux, H. Prévost // Microorganisms. – 2022. – V. 10. – № 12. – P. 2474. DOI: 10.3390/microorganisms10122474.

Patange, A. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma / A. Patange, D. Boehm, C. Bueno-Ferrer, P.J. Cullen, P. Bourke // Food microbiology. – 2017. – V. 66. – P. 48-54. DOI: 10.1016/j.fm.2017.04.002.

Gribble, A. Spoilage characteristics of Brochothrix thermosphacta and campestris in chilled vacuum packaged lamb, and their detection and identification by real time PCR / A. Gribble, G. Brightwell // Meat science. – 2013. – V. 94. – № 3. – P. 361-368. DOI: 10.1016/j.meatsci.2013.03.016.

Erkmen, O. Antimicrobial effects of pressurised carbon dioxide on Brochothrix thermosphacta in broth and foods / O. Erkmen // Journal of the Science of Food and Agriculture. – 2000. – V. 80. – № 9. – P. 1365-1370. DOI: 10.1002/1097-0010(200007)80:9<1365: AID-JSFA652>3.0.CO;2-P.

PAPON, M. Factors affecting growth and lipase production by meat lactobacilli strains and Brochothrix thermosphacta / M. PAPON, R. Talon // Journal of Applied Microbiology. – 1988. – V. 64. – № 2. – P. 107-115. DOI: 10.1111/j.1365-2672. 1988.tb02729.x.

McClure, P.J. A predictive model for the combined effect of pH, sodium chloride and storage temperature on the growth of Brochothrix thermosphacta / P.J. McClure, J. Baranyi, E. Boogard, T.M. Kelly, T.A Roberts // International journal of food microbiology. – 1993. – V. 19. – № 3. – P. 161-178. DOI: 10.1016/0168-1605(93)90074-Q.

Stackebrandt, E. The genus Brochothrix / E. Stackebrandt, D. Jones // Prokaryotes. – 2006. – Т. 4. – С. 477-491. DOI: 10.1007/0-387-30744-3_12.

Pin, C. Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta / C. Pin, G.D. García de Fernando, J.A. Ordónez // Applied and Environmental Microbiology. – 2002. – V. 68. – № 9. – P. 4441-4447. DOI: 10.1128/AEM.68.9.4441-4447.2002.

Bahlinger, E. Development of two specific multiplex qPCRs to determine amounts of Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta and Staphylococcus in meat and heat-treated meat products / E. Bahlinger, S. Dorn-In, P.M. Beindorf, S. Mang, F. Kaltner, C. Gottschalk, M. Gareis, K. Schwaiger // International Journal of Food Microbiology. – 2021. – V. 337. – P. 108932. DOI: 10.1016/j.ijfoodmicro.2020.108932.

Decimo, M. Characterization of gram‐negative psychrotrophic bacteria isolated from Italian bulk tank milk / M. Decimo, S. Morandi, T. Silvetti, M. Brasca // Journal of Food Science. – 2014. – V. 79. – № 10. – P. M2081-M2090. DOI: 10.1111/1750-3841.12645.

Vithanage, N.R. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential / N.R. Vithanage, M. Dissanayake, G. Bolge, E.A. Palombo, T.R. Yeager, N. Datta, // International Dairy Journal. – 2016. – V. 57. – P. 80-90. DOI: 10.1016/j.idairyj.2016.02.042.

Salgado, C.A. Spoilage potential of a heat-stable lipase produced by Serratia liquefaciens isolated from cold raw milk / C.A. Salgado, F. Baglinière, M.C.D. Vanetti // LWT. – 2020. – V. 126. – P. 109289. DOI: 10.1016/j.lwt.2020.109289.

Chen, L. Detection and impact of protease and lipase activities in milk and milk powders / L. Chen, R.M. Daniel, T. Coolbear // International dairy journal. – 2003. – V. 13. – № 4. – P. 255-275. DOI: 10.1016/S0958-6946(02)00171-1.

Deeth, H.C. Lipoprotein lipase and lipolysis in milk / H.C. Deeth // International Dairy Journal. – 2006. – V. 16. – № 6. – P. 555-562. DOI: 10.1016/j.idairyj.2005.08.011.

Edima, H.C. Impact of pH and Temperature on the Acidifying Activity of Carnobacterium maltaromaticum / H.C. Edima, C. Cailliez-Grimal, A.M. Revol-Junelles, E. Rondags, J.B. Millière // Journal of dairy science. – 2008. – Т. 91. – № 10. – С. 3806-3813. DOI: 10.3168/jds.2007-0878.

Edima, H.C. A selective enumeration medium for Carnobacterium maltaromaticum / H.C. Edima, C. Cailliez-Grimal, A.M. Revol-Junelles, L. Tonti, M. Linder, J.B. Millière // Journal of microbiological methods. – 2007. – V. 68. – № 3. – P. 516-521. DOI: 10.1016/j.mimet.2006.10.006.

Afzal, M.I. Carnobacterium maltaromaticum: identification, isolation tools, ecology and technological aspects in dairy products / M.I. Afzal, T. Jacquet, S. Delaunay, F. Borges, J.B. Millière, A.M. Revol-Junelles, C. Cailliez-Grimal // Food microbiology. – 2010. – V. 27. – № 5. – P. 573-579. DOI: 10.1016/j.fm.2010.03.019.

De Bruyn, I.N. Lactobacillus divergens is a homofermentative organism / I.N. De Bruyn, A.I. Louw, L. Visser, W.H. Holzapfel // Systematic and applied microbiology. – 1987. – V. 9. – № 3. – P. 173-175. DOI: 10.1016/S0723-2020(87)80018-8.

De Bruyn, I.N. Glucose metabolism by Lactobacillus divergens / I.N. De Bruyn, W.H. Holzapfel, L. Visser, A.I. Louw // Microbiology. – 1988. – V. 134. – № 8. – P. 2103-2109. DOI: 10.1099/00221287-134-8-2103.

Leisner, J.J. Carnobacterium: positive and negative effects in the environment and in foods / J.J. Leisner, B.G. Laursen, H. Prévost, D. Drider, P. Dalgaard // FEMS microbiology reviews. – 2007. – V. 31. – № 5. – P. 592-613. DOI: 10.1111/j.1574-6976.2007. 00080.x.

Schillinger, U. The genus Carnobacterium / U. Schillinger, W.H. Holzapfel // The genera of lactic acid bacteria. – 1995. – Р. 307-326.

Gänzle, M.G. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage / M.G. Gänzle // Current Opinion in Food Science. – 2015. – V. 2. – P. 106-117. DOI: 10.1016/j.cofs.2015.03.001.

Ward, B. Bacterial energy metabolism / B. Ward // Molecular medical microbiology. – Academic Press, 2015. – P. 201-233. DOI: 10.1016/B978-0-12-397169-2.00011-1.

Borch, E. The aerobic growth and product formation of Lactobacillus, Leuconostoc, Brochothrix, and Carnobacterium in batch cultures / E. Borch, G. Molin // Applied Microbiology and Biotechnology. – 1989. – V. 30. – P. 81-88. DOI: 10.1007/BF00256001.

Laursen, B.G. Carnobacterium species: effect of metabolic activity and interaction with Brochothrix thermosphacta on sensory characteristics of modified atmosphere packed shrimp / B.G. Laursen, J.J. Leisner, P. Dalgaard // Journal of Agricultural and Food Chemistry. – 2006. – V. 54. – № 10. – P. 3604-3611. DOI: 10.1021/jf053017f.

Zhang, P. Complementary antibacterial effects of bacteriocins and organic acids as revealed by comparative analysis of Carnobacterium spp. from meat / P. Zhang, M. Gänzle, X. Yang // Applied and Environmental Microbiology. – 2019. – V. 85. – № 20. – P. e01227-19. DOI: 10.1128/AEM.01227-19.

Iskandar, C.F. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum / C.F. Iskandar, C. Cailliez-Grimal, A. Rahman, E. Rondags, B. Remenant, M. Zagorec, A.M. Revol-Junelles // Food microbiology. – 2016. – V. 58. – P. 79-86. DOI: 10.1016/j.fm.2016.03.008.

Casaburi, A. Spoilage-related activity of Carnobacterium maltaromaticum strains in air-stored and vacuum-packed meat / A. Casaburi, A. Nasi, I. Ferrocino, R. Di Monaco, G. Mauriello, F. Villani, D. Ercolini // Applied and Environmental Microbiology. – 2011. – V. 77. – № 20. – P. 7382-7393. DOI: 10.1128/AEM.05304-11.

Youssef, M.K. Unusual compositions of microflora of vacuum-packaged beef primal cuts of very long storage life / M.K. Youssef, C.O. Gill, F. Tran, X. Yang // Journal of food protection. – 2014. – V. 77. – № 12. – P. 2161-2167. DOI: 10.4315/0362-028X.JFP-14-190.

Youssef, M.K. Storage life at 2° C or− 1.5° C of vacuum‐packaged boneless and bone‐in cuts from decontaminated beef carcasses / M.K. Youssef, C.O. Gill, X. Yang // Journal of the Science of Food and Agriculture. – 2014. – V. 94. – № 15. – P. 3118-3124. DOI: 10.1002/jsfa.6659.

Mohsina, K. Effect of glucose, pH and lactic acid on Carnobacterium maltaromaticum, Brochothrix thermosphacta and Serratia liquefaciens within a commercial heat-shrunk vacuum-package film / K. Mohsina, D.A. Ratkowsky, J.P. Bowman, S. Powell, M. Kaur, M.L. Tamplin // Food microbiology. – 2020. – V. 91. – P. 103515.

 Kaur, M. Culture-dependent and culture-independent assessment of spoilage community growth on VP lamb meat from packaging to past end of shelf-life / M. Kaur, H. Shang, M. Tamplin, T. Ross, J.P. Bowman // Food microbiology. – 2017. – V. 68. – P. 71-80. DOI: 10.1016/j.fm.2017.06.015.

Батаева, Д.С. Обзор прогностических моделей в пищевой микробиологии / Д.С. Батаева, М.А. Грудистова, Е.В. Зайко, В.К. Дерюгин // Все о мясе. – 2023. – № 1. – С. 50-53. DOI: 10.21323/2071-2499-2023-1-50-53.

Bataeva, D.S. Obzor prognosticheskikh modelej v pishhevoj mikrobiologii [Overview of predictive models in food microbiology] / D.S. Bataeva, M.A. Grudistova, E.V. Zajko, V.K. Deryugin // Vsyo o myase. – 2023. – № 1. – Р. 50-53. DOI: 10.21323/2071-2499-2023-1-50-53.


Контакты:

Батаева Дагмара Султановна
d.bataeva@fncps.ru
+7-495-676-95-11 (доб. 409)
Грудистова Мария Александровна
m.grudistova@fncps.ru
Юшина Юлия Константиновна
yu.yushina@fncps.ru
Дерюгин Вячеслав Константинович
v.deryugin@fncps.ru

Для цитирования:

Батаева, Д.С. Оценка роста «пищевых» микроорганизмов порчи в модельных средах / Д.С. Батаева, М.А. Грудистова, Ю.К. Юшина, В.К. Дерюгин // Все о мясе. – 2023. – № 3. – С. 64-69. DOI: 10.21323/2071-2499-2023-3-64-69.

For citation:

Bataeva, D.S. Evaluation of the growth of food spoilage microorganisms in model media / D.S. Bataeva, M.A. Grudistova, Yu.K. Yushina, V.K. Deryugin // Vsyo o myase. – 2023. – № 3. – Р. 64-69. DOI: 10.21323/2071-2499-2023-3-64-69.





Политика конфиденциальности

Противодействие коррупции

Карта сайта

Яндекс цитирования Яндекс.Метрика